АЕА17 Датчик давления

Техническая информация

Содержание

1. Обзор	.3
1.1 Принцип измерения	3
1.2 Входной сигнал	
1.3 Выходной сигнал	4
1.4 Питание	4
1.4.1 Силовая нагрузка	4
2. Параметры	.4
2.2.1 Характеристики	5
2.2.2 Точность	5
3. Условия окружающей среды	5
3.2 Класс защиты	5
3.3 Класс взрывозащиты	. 5
4. Конструкция	.6
4.1 Конструкция и габариты	6
4.1.1 Размеры фланцевых соединений	.6
4.2 Материал	6
4.2.1 Материал корпуса	.6
4.2.2 Материал мембраны	6
4.2.3 Материал уплотнителя корпуса	.7
4.3 Монтаж	7
1) Место монтажа	7
2) Способ монтажа	7
5. Требования к монтажу и эксплуатации	7

1. Обзор

В данном руководстве описаны принцип измерения, состав изделия, технические параметры, установка и обслуживание преобразователя давления AEA18 (далее - преобразователь давления), чтобы персонал, обслуживающий изделие, мог изучить и понять техническую информацию о данном изделии. Данное изделие имеет взрывозащищенную конструкцию в соответствии с правилами GB/T 3836.1-2021 и GB/T 3836.2-2021. Маркировка взрывозащиты - Ex db IIC T6 Gb. Он подходит для использования на предприятиях, где есть или может присутствовать взрывоопасная среда категорий IIA, IIB, IIC, групп T1 ~ T6. Воспламеняющиеся газы и пары

Взрывоопасен при смешивании с воздухом. Для использования в зоне 1 или 2.

1.1 Принцип измерения

В датчике давления АЕА18 используется диффузионный кремний/монокристаллический кремниевый сердечник.

Диффузионный кремниевый сердечник: Давление измеряемой среды непосредственно воздействует на мембрану датчика (обычно это мембрана из материала 316L), заставляя мембрану производить микросмещение, пропорциональное давлению среды, что приводит к изменению значения сопротивления датчика, и Схема Витстоуна обнаруживает это изменение, преобразует и выдает стандартный измерительный сигнал, соответствующий этому давлению. Датчик из монокристаллического кремния: Пьезорезистивный датчик давления построен на основе пьезорезистивного эффекта монокристаллического кремния. В качестве упругого элемента используется монокристаллическая кремниевая пластина. При изменении давления монокристаллический кремний деформируется, в результате чего тензорезистор, непосредственно диффундирующий на него, изменяется пропорционально измеряемому давлению, а затем мостовая схема получает соответствующий выходной сигнал напряжения. . Принципиальная схема показана на рисунке 1.

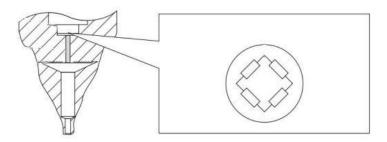


РИС. 1 Принципиальная схема датчика

1.2 Входной сигнал

Компания выпускает две категории преобразователей давления: интеллектуальные и аналоговые. Интеллектуальный преобразователь представляет собой полностью изолированный интеллектуальный полевой измерительный прибор с протоколом связи HART, разработанный нами на основе передового опыта в стране и за рубежом и с использованием технологии полностью изолированных цепей.

Аналоговая электроника: абсолютное и избыточное давление Электронный модуль HART: абсолютное давление и манометрическое давление, стабильная работа и сильная способность защиты от помех, а также возможность резервного копирования и восстановления данных параметров

- 1.3 Выходной сигнал
- а) Аналоговый сигнал 4-20 мА, двухпроводная система
- b) Сигнал связи 4-20 мА HART, двухпроводная система
- c) ModBus RS485
- d) При отказе устройства выдается сигнал тревоги
- 1.4 Питание
- а) 10~32 В постоянного тока, двухпроводная система
- b) Если требуется связь HART, питание должно быть ≥18,5 В.

1.4.1 Силовая нагрузка

Поскольку сигнал цифровой связи HART накладывается на сигнал (4~20) мА, для передачи или приема сигнала цифровой связи HART коммуникатор должен пройти через нагрузочный резистор, последовательно подключенный к цепи. Чтобы питание и связь работали правильно, сопротивление нагрузочного резистора должно находиться в определенном диапазоне. Взаимосвязь между напряжением питания и сопротивлением нагрузки показана на рисунке 2.

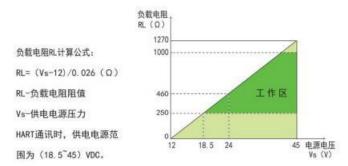


РИС. 2 Зависимость между напряжением питания и сопротивлением нагрузки

2. Параметры

2.1 Диапазон измерения

Диапазон давления	Тип	Мин.	Повышен.	Пониж.	Лимит избыт.
дианазон давления	Давления	Диапазон	Диапазон	Диапазон	давления
0-6КПа	Манометрическое	0.6КПа	6КПа	-6КПа	200kΠa
	Манометрическое	4КПа	40КПа	-40КПа	1МПа
0-40КПа	Абсолютное	101711	401717	OIZH	1) en
	давление	10КПа	40КПа	0КПа	1МПа

	Манометрическое	25КПа	250КПа	-100КПа	4МПа
0-250КПа	Абсолютное давление	10КПа	250КПа	0КПа	4М∏а
	Манометрическое	150КПа	3МПа	-100КПа	15МПа
0-3МПа	Абсолютное давление	30КПа	3МПа	0КПа	15М∏а
0-10МПа	Манометрическое	0.5МПа	10МПа	-100КПа	20МПа
0-40МПа	Манометрическое	2МПа	40МПа	-100КПа	50МПа

Для получения информации о других диапазонах измерений по заказу обращайтесь в компанию.

2.2 Точность

2.2.1 Характеристики

- а) Влияние температуры окружающей среды: ≤±0.1%F.S/10°C
- b) Долгосрочная стабильность: ≤±0,2%/URL (12 месяцев)
- c) Влияние статического давления: $\leq \pm 0,1\%$ /диапазон/1МПа
- d) Время отклика: 0,25 с
- е) Влияние источника питания: $\leq \pm 0.005\%/URL/V$
- f) Воздействие вибрации: $\leq \pm 0.005\%/URL/g$

2.2.2 Точность

- a) $\pm 0.1\%$
- b) $\pm 0.2\%$
- c) $\pm 0.075\%$

3. Условия окружающей среды

3.1 Температура

- а) Рабочая температура: -40 \sim 105 $^{\circ}$ С
- b) Температура хранения: -40∼85°C
- с) Влажность при хранении: ≤95% отн. вл.

3.2 Класс защиты

- a) IP65
- b) IP67

3.3 Класс взрывозащиты

NEPSI Ex db IIC T6 Gb

4. Конструкция

4.1 Конструкция и габариты

4.1.1 Размеры фланцевых соединений

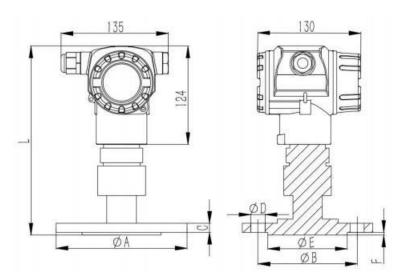


РИС. 3 Размеры фланцевого соединения (единицы измерения: мм)

Таблица 1: Размеры фланцев

Фланец (DIN)	A	В	С	D	Е	F	L
DN25 PN40	125	85	16	14	62	9.6	186
DN50 PN40	165	125	20	18	95	9	188
DN80 PN16	200	160	20	18	127	8.8	188

4.2 Материал

4.2.1 Материал корпуса

- а) Литой алюминиевый сплав
- b) 304

4.2.2 Материал мембраны

- a) 316L
- b) Xастеллой C
- с) Тантал
- d) 316L с золотым покрытием
- е) Титан
- f) Монель

4.2.3 Материал уплотнителя корпуса

Нитриловая резина

4.3 Монтаж

1) Место монтажа

Если измеряемой средой является газ, прибор следует устанавливать в верхней части трубы. Если измеряемая среда - жидкость, прибор следует устанавливать на боковой или нижней стороне трубы.

2) Способ монтажа

Если технологический интерфейс прибора установлен на трубе (или стенке емкости) с помощью резьбы или фланца, установка кронштейна не требуется; При изменении положения установки может возникнуть ошибка нулевой точки. Пожалуйста, сбросьте нулевую точку и откалибруйте ее снова. Это не повлияет на диапазон измерений.

Важно:

- а) Старайтесь избегать установки прибора в местах с текучей средой или в местах с ударным давлением;
- b) Прибор следует устанавливать в сухом проветриваемом помещении, вдали от помех, создаваемых сильными магнитными полями. При установке на открытом воздухе избегайте попадания прямых солнечных лучей или дождя;
- с) Проводка должна обеспечивать ввод кабеля в датчик снизу вверх.
- d) При установке кабельного ввода необходимо выполнить следующие действия: Каждая деталь должна быть расположена по порядку, то есть кабель должен быть зачищен и пропущен через внутреннее отверстие компрессионной гайки, металлическую шайбу, резиновое уплотнительное кольцо и кабельный ввод (последовательно). После завершения затяните компрессионный винт так, чтобы резиновое уплотнение зажало кабель.
- е) Выходное устройство, которое не может быть использовано изделием, должно быть закрыто заглушками. Установка заглушек на взрывозащищенную резьбу должна производиться в соответствии с требованиями стандартов по взрывозащите.

5. Требования к монтажу и эксплуатации

- 1) При обслуживании и использовании изделия следует придерживаться принципа "открывать крышку после выключения питания";
- 2) Отверстие кабельного ввода должно быть оборудовано устройством кабельного ввода или заглушкой, одобренной инспекцией по взрывозащите и соответствующей виду и классу взрывозащиты;
- 3) Пользователям не разрешается заменять или изменять электрические компоненты изделия по своему усмотрению, и во избежание нарушения взрывозащищенности и причинения

ущерба следует совместно с компанией устранять неисправности в процессе эксплуатации;

4) Установка, использование и обслуживание изделия должны осуществляться в соответствии с положениями руководства по эксплуатации изделия.

	AEA17 Таблица кодов заказа датчиков давления		
Model			
AEA17	Датчик давления		
Тип измерен	яин		
G	Манометрическое давление		
A	Абсолютное давление		
Диапазон из	вмерения		
A	0~40kПa		
В	0~250kПa		
С	0~3МПа		
D	0~10МПа		
Y	На заказ		
Мембрана			
0	316L		
1	Хастеллой С-276		
2	Тантал		
3	Титан		
4	Монель		
Y	На заказ		
Масло для заполнения мембраны			
A	Нормальная температура силиконового масла (-35°C~150°C)		
В	Высокотемпературное силиконовое масло (15°C~315°C)		
С	Фторуглеродное масло (-45°C~205°C)		

D	Растительное масло (10°C~80°C)			
Стандарт присоединения, класс давления				
E1	PN10/16, EN1092-1			
E2	PN25/40, EN1092-1			
E3	PN63, EN1092-1			
E4	PN100, EN1092-1			
A1	150LB, ASME B16.5			
A2	300LB, ASME B16.5			
A3	600LB, ASME B16.5			
J1	10K, JIS B2220			
J2	20K, JIS B2220			
Ј3	30K, JIS B2220			
J4	63K, JIS B2220			
CS	Tri-Clamp ISO2852			
YY	На заказ			
Размер техно	логического соединения			
A	DN25/1"			
В	DN32/1.25"			
С	DN40/1.5"			
D	DN50/2"			
Е	DN65/2.5"			
F	DN80/3"			
G	DN100/4"			
Н	1.5" Патрон			
Ι	2" Патрон			
Y	На заказ			
Материал фл	Материал фланца			
A	304			
В	316L			
Y	На заказ			

Класс взрывозащиты				
A	Нет			
В	NEPSI Ex d IIC T6 Gb			
Y	На заказ			
Дисплей				
0	Без дисплея			
1	LCD дисплей			
Y	На заказ			
Выходной си	Выходной сигнал			
A	4-20mA			
В	4-20mA+HART			
С	Modbus RS485			
Y	На заказ			
Электрическое соединение				
A	M20*1.5 внутренняя резьба			
В	NPT1/2 внутренняя резьба			
С	G1/2 мама			
Y	На заказ			