

Массовый расходомер для газа

±1% от полной шкалы, программируемое реле

Серия GFM2

Массовый расходомер для газа серии GFM2 является идеальным выбором для измерения расходов для разнообразных газов. Серия GFM2 использует прямотрубный сенсор с ограничительным элементом для потока для обеспечения высокой точности $\pm 1\%$ от полной шкалы и повторяемость $\pm 0,25\%$ от полной шкалы.

Газовый поток может измеряться в 23 различных технических единицах на опциональном ЖК дисплее размером 2x16 знаков. Цифровые интерфейсы RS-232 или RS-485 позволяют легко настроить и подключать до 256 устройств (только RS-485). Кроме того, удобный интерфейс позволяет выполнить программирование аварийного сигнала для высокого и низкого газового потока параллельно с двумя электромеханическими реле SPDT (однополюсный на два направления) с опцией запирания. Сохраняется информация о калибровке для 10 различных газов, внутреннем или указанном пользователем коэффициенте К. Стандартно устройство поступает поддерживаемым программным обеспечением для программирования различных параметров серии GFM2. С самодиагностикой при запуске и пределом по давлению до 34,5 бар серия GFM2 является оптимальным выбором для многих измерений потока. Серия GFM2 включает сводный сертификат NIST (Национальный институт стандартов и технологий США).

ОСОБЕННОСТИ

- Программируемый суммарный сигнал показывает полное количество газа.
- Аварийный сигнал высокого и низкого потока газа ограничен предустановленным интервалом задержки.
- Две настройки программируемого пользователем электромеханического реле SPDT (однополюсный на два направления) с опцией запирания.
- Выбираемые пользователем аналоговые выходные сигналы от 0 до 5 В пост. тока или от 4 до 20 мА.
- Внутренние коэффициенты преобразования для 32 газов.
- Цифровой интерфейс (RS-232 / RS-485, доступен Profibus DP).
- Автоматическая настройка смещения нуля сенсора (через цифровой интерфейс или местную кнопку).
- Тест самодиагностики.

ХАРАКТЕРИСТИКИ

Работа: Чистые газы совместимые со смачиваемыми деталями.

Смачиваемые материалы:

GFM2-X-X-A: Анодированный алюминий, латунь, нерж. ст. 316 SS, кольца круглого сечения из фтороэластомера:

GFM2-X-X-S: Нерж. ст. 316 SS и кольца круглого сечения из фтороэластомера; Опциональные кольца круглого сечения из Buna-N, EPR и ПТФЭ.

Точность: ±1% от полной шкалы.

Повторяемость: $\pm 0,25\%$ от полной шкалы. Время отклика: 2 секунды в пределах $\pm 2\%$ от

действующего потока.

Выходной сигнал: Линейный от 0 до 5 В пост. тока (импеданс нагрузки мин. 3000 Ом); от 4 до 20 мА (сопротивление измерительного контура макс. 500 Ом).

Параметры реле: 1 А при 24 В пост. тока.

Макс. размер частиц: 5 микрон.

Температурные пределы: От 0 до 50 С. Источник питания: От 11 до 26 В пост. тока. Присоединения к процессу: Компрессионный фитинг 1/8" для расходов ≤10 л/мин; 1/4" для ≤50

л/мин; 3/8" для ≤100 л/мин.

Дисплей: ЖК дисплей размером 2 x 16 знаков (опция).

Пределы по давлению: 34,5 бар.

Суммарная течь: 1 x 10-9 smL/сек по гелию.

Вес: 0,48 кг.

Пример	GFM2	AIR	010	Α	V	Α	N	Α	2	GFM2-AIR-010-A-V-A-N-A-2
Серия	GFM2									Массовый расходомер для газа
Тип газа и		AIR								Воздух 1,0000
коэффициент К		AR								Аргон 1,4573
		C ₂ H ₂								Ацетилен 0,5829
		C₃H ₈								Пропан 0,3500
		C ₄ H ₁₀								Бутан 0,2631
		CH₄								Метан 0,7175
		CO								Угарный газ 1,0000
		CO ₂								Углекислый газ 0,7382
		HF								Фтористый водород 0,9998
		HE								Гелий 1,4540
		H ₂								Водород 1,0106
		N_2								Азот 1,0000
		NH ₃								Аммиак 0,7310
		O ₂								Кислород 0,9926
		SO ₂								Двуокись серы 0,6900
Макс. поток			010							10 л/мин
(л/мин N2)			050							50 л/мин
			100							100 л/мин
Материал				Α						Алюминий
корпуса				S						Нержавеющая сталь
Материал					V					Фтороэластомер
уплотнений					В					Buna-N
					Е					EPR
					Т					ПТФЭ
Фитинги						Α				Компрессионный 1/8" (10 л/мин)
						В				Компрессионный 1/4" (50 л/мин)
						D				Компрессионный 3/8" (100 л/мин)
Дисплей							N			Нет дисплея
							L			СИД дисплей
Выходной								Α		От 0 до 5 В пост. тока
сигнал								В		От 4 до 20 мА
Цифровой									2	RS232
интерфейс									5	RS485
									9	PROFIBUS

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ А-110NA12, Источник питания 110 В переменного тока, 12 В пост. тока с коммуникационным интерфейсом.